Global weak sharp minima for convex (semi-)infinite optimization problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Sharp Minima in Set-Valued Optimization Problems

and Applied Analysis 3 x0, y0 ∈ L StrD F, S resp., x0, y0 ∈ LW MinD F, S , if there exists a neighborhood U of x0 in X such that y0 ∈ StrD F U ∩ S ( resp., y0 ∈ W minD F U ∩ S ) , that is, ∀x ∈ S∩U, F x − y0 ∩ −D\{0} ∅ resp. ∀x ∈ S∩U, F x − y0 ∩ − intD ∅. 2.4 We will say that x0, y0 is a global strict global weak minimizers when U X. The set of all global strict minimizers resp., weak minimizer...

متن کامل

Weak sharp minima in multiobjective optimization

We extend some necessary and sufficient conditions for strict local Pareto minima of orderm obtained by Jiménez (2002) to the case of weak ψ-sharp local Pareto minima, i.e., to the case when the local solution is not necessarily unique.

متن کامل

The Global Weak Sharp Minima with Explicit Exponents in Polynomial Vector Optimization Problems

In this paper we discuss the global weak sharp minima property for vector optimization problems with polynomial data. Exploiting the imposed polynomial structure together with tools of variational analysis and a quantitative version of Lojasiewicz’s gradient inequality due to D’Acunto and Kurdyka, we establish the Hölder type global weak sharp minima with explicitly calculated exponents.

متن کامل

Necessary Conditions for Weak Sharp Minima in Cone-Constrained Optimization Problems

and Applied Analysis 3 Let g : X → Y be a vector-valued mapping. The Hadamard and Dini derivatives of g at x in a direction v ∈ X are, respectively, defined by dHg x, v lim t→ 0 , u→v g x tu − g x t , dDg x, v lim t→ 0 g x tv − g x t . 2.4 Let f : X → R ∪ { ∞} be finite at x and m ≥ 1 an integer number. The upper Studniarski and Dini derivatives of orderm at x in a direction v ∈ X are, respecti...

متن کامل

Equivalent properties of global weak sharp minima with applications

* Correspondence: [email protected] Department of Mathematics, School of Science, Shandong University of Technology, Zibo, 255049, China Full list of author information is available at the end of the article Abstract In this paper, we study the concept of weak sharp minima using two different approaches. One is transforming weak sharp minima to an optimization problem; another is using conju...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2008.07.052